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Abstract—As integrated circuit technologies continue to scale,
efficient performance modeling becomes indispensable. Recently,
several new learning paradigms have been proposed to reduce
the computational cost associated with accurate performance
modeling. A common attribute among most of these paradigms is
the leverage of the sparsity feature to build efficient performance
models. In this work, we propose a new perspective to incorporate
sparsity in the modeling task by utilizing spike and slab feature
selection techniques. Practically, our proposed method uses two
different priors on the different model coefficients based on their
importance. This is incorporated into a mixture model that can
be built using a hierarchical Bayesian framework to select the
important features and find the model coefficients. Our numerical
experiments demonstrate that the proposed approach can achieve
better results compared to traditional sparse modeling techniques
while also providing valuable insight about the important features
in the model.

I. INTRODUCTION

The continuous drive towards scaling integrated circuits (IC)
technologies has been accompanied by a trend of increasing
complexity of chip functionalities. With such complex designs,
and technologies descending deep in the sub-micron spectrum,
the challenges associated with retaining the robustness of state-
of-art designs continue to exacerbate [1]. With the aggressive
scaling, process variation manifests itself among the most
prominent factors limiting the yield of analog and mixed-
signal (AMS) circuits [2]. Assessing this variation must form
part of the design flow of modern ICs [1]- [2]. Towards this
end, performance modeling has been conventionally used to
capture this variability through analytical models that can be
used in various applications such as yield estimation [3]–[5]
and design optimization [6], [7].

With the increased size and complexity of modern ICs,
traditional performance modeling frameworks that rely on a
large number of simulations to achieve highly-accurate models
have become obsolete due to the large simulation cost [7]. In
the literature, different performance modeling approaches have
been proposed to address this challenge [8]–[13]. To reduce the
required number of samples, and hence, the simulation cost,
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recent performance modeling frameworks have incorporated
knowledge about model coefficients based on prior assump-
tion and/or historical data into the modeling framework. For
instance, sparse regression exploits the assumption that most
coefficients are close to zero to effectively build accurate
models [8], [9]. On the other hand, Bayesian model fusion
(BMF) takes advantage of an early-stage model to efficiently
build a model for a later stage [10]–[12]. Moreover, co-
learning BMF proposed in [14] leverages performance side
information to further reduce modeling cost.

Recently, focus has shifted from the computationally ex-
pensive supervised learning paradigm to the semi-supervised
learning paradigm, where a smaller number of simulations is
needed to build accurate models [15]–[17]. These approaches
use different learning schemes to leverage unlabeled data,
which requires no additional simulation cost. This offers a
path towards efficiently building performance models when a
small number of labeled samples is available.

A common feature of all the aforementioned approaches
is leveraging sparsity inherent in the performance modeling
problem. Although the number of process variables in modern
IC designs is large, only few of these variables are required to
estimate the performance, with other variables being either
uninformative, or highly correlated with other variables. A
reasonable model might therefore be expected to have only few
non-zero coefficients. A model that captures this inherent spar-
sity allows us to avoid overfitting to noisy data, and reduces
the computational cost associated with model building. Even
the most advanced learning schemes proposed [10], [14]–
[17] incorporate sparsity as a corner block for the modeling
techniques.

Mathematically, sparsity information can be incorporated by
setting an upper bound on the number of non-zero coefficients,
amounting to incorporating an L-0 norm into the regression
problem. However, such a constraint renders the modeling
problem intractable. Several approaches have been proposed
to address this challenge. Traditionally, these approaches can
be divided into two broad categories: (i) relaxation-based
approaches and (ii) heuristics .

Under the relaxation-based approaches, the two most com-
mon schemes are Lasso [18] and the ridge regression [10],
[19], where L-1 norm and L-2 norm constraints are used
as proxies for the constraint on the number of non-zero
coefficients. In theory, this is equivalent to using a Laplace
or a Gaussian prior on the model coefficients respectively.
These constraints are sometimes referred to as shrinkage
constraints, because they favor solutions where the value of
the performance model coefficients are close to zero. While



this encourages sparsity—particularly in the L-1 case—it also
penalizes model coefficients with high values. This behaviour
is not always desired and can in fact affect the quality of the
model. Further, these models are not true variable selection
techniques, where a subset of important variables are identified
and handled differently by the model: a variable could have a
small coefficient because it is non-important, or because it is
important but has a small numeric value.

Another downside of relaxation-based approaches is that
they do not directly capture uncertainty in the model, instead
providing a point estimate. Bayesian analogues of the Lasso
and ridge regression involve placing a Laplace or a Gaussian
prior, respectively, on the model coefficients. This allows us
to incorporate prior knowledge, and to infer our uncertainty
about the model parameters. However, they still penalize high
values and do not perform explicit variable selection.

On the other hand, heuristics methods explicitly perform
variable selection, by using an iterative method to choose
the important variables to include in the model [8], [9]. As
a first step, variables highly correlated with the performance
of interest (PoI) are iteratively selected. Then, all coefficients
corresponding to non-important variables are set to zero, and
least squares fitting can be used to find the coefficients of
the few important variables [20]. While such methods clearly
identify the important features, these features selection process
is heuristic and some information can be lost when setting
all other coefficients to zero. In addition, experiments in [15]
have shown that these heuristics may exhibit some unstable
behaviour when the number of labeled samples is very small.

In this work, we propose using a Bayesian spike and
slab feature selection technique to efficiently build accurate
performance models. Spike and slab models explicitly par-
tition variables into important and non-important, and then
models the values of the important variables independently
of the feature selection mechanism. A hierarchical Bayesian
framework is utilized to determine both the importance and
value of the coefficients simultaneously. At its highest level,
the hierarchy dictates that a particular coefficient is sampled
from one of two zero-mean prior Gaussian distributions: a low
variance distribution centered around zero, referred to as the
spike, and a large variance distribution, referred to as the slab.
In our method, a Gibbs sampler is proposed to solve for the
posterior distribution of the model coefficients based on the
spike and slab mixture model [21], [22]. Unlike optimization-
based methods, this allows us to directly capture not just a
point estimate of the coefficients, but also our uncertainty
about those estimates.

Our proposed method addresses the sparsity in performance
modeling in a novel approach that tackles the problem from
a new perspective. Unlike relaxation-based approaches, our
approach determines the importance of a variable separately
from determining its value. Therefore, unlike the case of Lasso
and ridge regression, the model coefficients are not penalized
for high values if they are determined to by important in the
model. In addition, unlike the heuristic methods mentioned
earlier, important features are selected jointly and the non-
important features are not set to zero, but rather sampled
from a low variance prior which can reflect weak correlations
that are otherwise missed. Hence, our proposed methods
introduces a new perspective for leveraging sparsity that can

be incorporated with advanced modeling techniques such as
semi-supervised learning. The contributions of this work can
be summarized as follows.

• We propose a spike and slab model to efficiently leverage
sparsity in performance modeling through a mixture of
priors.

• A hierarchical Bayesian model is presented to learn the
importance and values of coefficients in a sparse model.

• We introduce a Gibbs sampler to obtain the model
coefficients based on the mixture model.

• The experimental results demonstrate superior results
compared to conventional sparse modeling approaches.

The remainder of this paper is organized as follows. In
Section II we review the technical background and then present
the proposed approach in Section III. Section IV presents
numerical results demonstrating the efficacy of our method,
and conclusions are presented in Section V.

II. BACKGROUND

A. Performance Modeling

Mathematically, a performance model approximates a
circuit-level PoI (e.g. gain, power) as an analytical function
of the process variables:

y ≈ f(p) =
K∑
k=1

βk.bk(p) (1)

where y is the PoI, p is a vector containing the process vari-
ables, f(p) is the modeling function, {βk; k = 1, 2, . . . ,K}
contains the model coefficients, {bk; k = 1, 2, . . . ,K} con-
tains the basis functions, and M denotes the total number of
basis functions.

Given a set of samples, the model coefficients in (1) are
usually obtained through least-squares fitting by solving the
following optimization problem [22], [20]:

min
α
||y −X · β||22 (2)

where || • ||2 is the L2−norm of a vector, and

X =

 b1(p(1)) b2(p(1)) . . . bK(p(1))
...

...
. . .

...
b1(p(N)) b2(p(N)) . . . bK(p(N))

 (3)

β =
[
α1 α2 . . . αM

]T
(4)

y =
[
y(1) y(2) . . . y(N)

]T
. (5)

In (3)-(5), N is the total number of samples, and p(n) and y(n)

are the values of p and y at the n−th sample respectively.
However, least-squares will tend to overfit if the number

of coefficients is large relative to the number of samples.
Given the high dimensionality of the performance models
in complex AMS circuit designs, this means the simulation
cost for building accurate models can be exorbitant. Hence,
most recent performance modeling techniques incorporate
additional information about the model, such as the sparse
nature of the coefficients vector, to reduce the number of
simulations needed to build accurate models [8]–[13].



B. Sparse Modeling
The large number of variables means that generating enough

samples to build highly accurate performance models using
least squares regression is often infeasible. However, even
though the number of variables is large, in many cases
variation in the data actually depends only on a small subset
of these variables.

To capture the assumption that only a small subset of
variables are relevant, we can constrain on the number of
non-zero model coefficients in our model. This encourages
solutions where a small set of important variables will have
non-zero coefficients while all other non-important ones will
have zero coefficients. This can be formulated as an optimiza-
tion problem with the following objective:

min
β

||y −X · β||22

subject to ||β||0 ≤ λ
(6)

In (6), || • ||0 is the “L0−norm” of a vector. The optimization
problems in (6) is NP-hard; hence, several heuristics and
relaxations have been proposed to efficiently find the sub-
optimal solutions β∗. For example, replacing the L0 penalty
with an L2 penalty will encourage coefficients to be smaller,
shrinking their values towards zero:

min
β

||y −X · β||22

subject to ||β||2 ≤ λ.
(7)

This can alternatively be expressed in terms of the Lagrangian,
min
β

||y −X · β||22 + c||β||2. (8)

The solution to this Lagrangian gives the maximum a poste-
riori (MAP) estimator for a Bayesian model where the prior
on the coefficients is a Gaussian with variance proportional to
c. This captures our intuition that, a priori, values tend to be
small.

If we replace the “L2−norm” in (7) with the “L1−norm”,
we recover the Lasso objective [18], which corresponds to the
MAP estimator of a Bayesian model with Laplace priors on
the coefficient. This will shrink coefficients more aggressively
towards zero, and is a common choice in sparse modeling.
While this does encourage sparsity, it comes at the cost of
forcing all coefficients to move close to zero by penalizing
for high values in β. In other words, all coefficients, despite
being important or not are pushed by the prior towards zero. A
practice which despite imposing sparsity, penalizes the values
of the coefficients which is not always desirable.

III. SPIKE AND SLAB MODEL FOR PERFORMANCE
MODELING

In this section, we present the details of the proposed spike
and slab approach for performance modeling.

A. Overview
As discussed above, we can construct a Bayesian analogue

of a ridge regression framework by placing a Gaussian prior
on the model coefficients. The standard deviation of the prior
describes the expected range of values for the coefficients: a
smaller standard deviation will encourage smaller coefficients.
Mathematically, this can be represented as:

(yi|xi,β, σ2) ∼ Normal(xTi β, σ
2) for i = 1, . . . , N

(βk|µ0, σ
2
0) ∼ Normal(µr, σ2

r) for k = 1, . . . ,K
(9)

Normal Probability Density Function
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Fig. 1 An example of a Gaussian spike and slab priors
mixture is shown. The spike prior is a small variance Gaussian
distribution (red) while the slab model has a relatively higher
variance (blue).

where xn is the n−th row of X and µr is typically set
to zero. While this formulation can be used to encourage
small coefficients, by choosing a small value of σ2

r , this will
encourage all coefficients to be small.

Rather than encouraging all coefficients to be small, we
want a mechanism that aggressively shrinks non-informative
coefficients towards zero, but allows informative coefficients
to be large. Starting from the formulation in (9), we propose
a new prior model where each model coefficient is associated
from one of two components: a spike prior, and a slab prior, as
shown in Fig. 1. This is done by introducing a latent variable
that selects the distribution from which the posterior of a
particular coefficient is sampled. Mathematically, the prior on
β can be expressed as [21]:

(βk|zk, τ2k ) ∼(1− zk)Normal(0, τ2k ) + zkNormal(0, ckτ2k )
(10)

where, τk > 0 is a suitably small value, ck > 0 is a suitably
large value, and zk is a binary latent variable. Coefficients
with posterior latent variable zk = 1 are those important in the
model. Their prior variance is large, which allows the posterior
value of βk to be large. On the other hand, zk = 0 implies
that the k−th coefficient is not important, and the small prior
variance means that the inferred coefficient value βk will tend
to be small. In other words, when zk = 1 the slab prior (i.e.,
blue curve in Fig. 1) is used, else the spike model (i.e., red
curve in Fig. 1) is used.

In this work, we adopt the spike and slab variable selection
framework proposed in [21] where a prior hierarchy on β is
established and a Gibbs sampler is proposed to solve for the
posterior mean of the model coefficients [21], [22]. The details
of this framework are presented in the next section.

B. Model Details

In practice the, the prior on βk in (10) can be represented
as Normal(0, jkτ2k ) where jk takes the value 1 when zk = 1
and a very small number, 1 >> ν0 > 0 when zk = 0. With
the new prior definition on β, the model can be expressed as
follows [21]:

(yi|xi,β, σ2) ∼Normal(xTi β, σ
2)

(βk|zk, τ2k ) ∼Normal(0, jkτ2k ).
(11)

Next, we define a new latent variable w that represents
the probability of a model coefficient being important in the
model. In other words, w can be viewed as the ratio of number



of important coefficients to the total number of coefficients
in the model. In addition, a uniform prior can be set on w.
This results in adding the following level of hierarchy to the
hierarchical model in (11):

(jk|ν0, w) ∼(1− w)δν0(•) + wδ1(•)
w ∼Uniform[0, 1],

(12)

where δν(•) is a discrete measure concentrated around ν.
Moreover, variables {τk; k = 1, 2, . . . ,K} represent the

variance of the spike priors for the model coefficients, and
σ2 represents the noise in the model. Hence, Gamma priors
can be set on these variables (expressed in terms of precision
instead of variance):

(τ−1
2 |b1, b2) ∼Gamma(a1, a2)

σ−2 ∼Gamma(b1, b2)
(13)

where a1, a2, b1, and b2 are hyper-parameters.
Equations (11)-(13) form a hierarchical Bayesian mixture

representing the spike and slab prior framework. The ultimate
goal is to obtain the the posterior distribution of β, P (β|y,X)
while integrating all latent variables and hyper-parameters.
However, such distribution does not have a closed form, hence,
it is not feasible to directly sample from the the posterior
distribution. Instead, we can derive a closed form conditional
distribution for β, and use an iterative Gibbs sampler to sample
from the unknown posterior [21], [22]. In principal, Gibbs
sampling is a Markov Chain Monte Carlo (MCMC) algorithm
for obtaining a group of samples which are approximated from
a probability distribution when direct sampling is difficult as
in the case of the posterior distribution of β.

According to the model in (11)-(13), βk has a Gaussian
prior and a Gaussian likelihood. Therefore, conditioned on
{τk, jk : k = 1, . . . ,K} and σ, the posterior distribution of β
is Gaussian [21], [22]:

(β|{τk, jk : k = 1, . . . ,K}, σ) ∼ Normal(µ, σ2Σ)

µ = ΣXTy Σ = (XTX + σ2Λ−1)−1
(14)

where Λ is a diagonal matrix with diagonal γ, and {γk =
jkτ

2
k : k = 1, . . . ,K}.

Next, once β is obtained, updated values for {jk : k =
1, . . . ,K} can be sampled from the conditional distribution
[21]:

(jk|ν0, w) ∼ w1,k

w1,k + w2,k
δν0(•) +

w2,k

w1,k + w2,k
δ1(•)

where:

w1,k =(1− w)ν
−1
2

0 exp(− β2
k

2ν0τ2k
)

w2,k =w exp(− β2
k

2τ2k
).

(15)

In (15), the values of w1,k and w2,k represent the unnor-
malized probabilities that the coefficient βk comes from the
spike and slab priors respectively. To sample jk, a sample
is obtained from a Bernoulli distribution with the normalized
values of w1,k and w2,k. If the sampled value is zero, jk is
set to ν0; otherwise, it is set to 1.

Then, τ−2
k can be sampled from its conditional Gamma

distribution [21]:

(τ−1
2 |β,J) ∼Gamma(a1 +

1

2
, a2 +

β2
k

2jk
) (16)

Moreover, the complexity parameter w can be sampled from
its conditional distribution:

(w|γ) ∼Beta(1 + # {k : jk = 1} , 1 + # {k : jk = ν0})
(17)

where # {k : jk = 1} and # {k : jk = ν0} are the number of
coefficients whose corresponding jk values are equal to 1 and
ν0 respectively. In other words, the two count terms represent
the number of important and non-important variables in the
model respectively.

Finally, the value of σ representing the model error can be
similarly sampled from its conditional distribution:

(σ−2|β, Y ) ∼Gamma(b1 +
n

2
, b2 +

||Y −Xβ||22
2

). (18)

This sampling scheme represents one iteration of the Gibbs
sampler used to obtain the final model. At the end of this
iteration, updated values are obtained for {γk = jkτ

2
k : k =

1, . . . ,K}, hence, matrix Λ in (14) can be updated and a new
value for β can be sampled [21].

This process is done iteratively until the sampling process
arrives at the final model solution. The overall sampling
algorithm is summarized in the III-C.

C. Gibbs Sampler

Algorithm 1 summarizes the Gibbs sampler used to obtain
the optimal model coefficients β∗ based on the model pre-
sented in (11)-(13). As a first step, variables {jk, τ2k : k =
1, . . . ,K}, w, a1, a2, b1, b2, ν0 and σ are initialized, and the
number of total sampling and burnout iterations, M and Bout,
are chosen. Here, burnout iterations refer to the early sampling
iterations that should be discarded when computing β∗. Next,
iterative sampling is performed while saving the resultant β
at each iteration. When the sampling is concluded, β∗ is
computed as the average of β across all sampling iterations
after discarding the first Bout iterations [21], [22].

Algorithm 1 Gibbs Sampler for Spike and Slab Model

1: Initialize values for variables {jk, τ2k : k =
1, . . . ,K}, w, a1, a2, b1, b2, and σ;

2: Set the number of sampling iterations M and the burnout
value Bout;

3: repeat
4: Sample β from its conditional distribution according

to (14);
5: Sample {jk : k = 1, . . . ,K} from the conditional

distribution in (15);
6: Sample {τk : k = 1, . . . ,K} from the conditional

distribution in (16);
7: Sample w from the conditional distribution in (17);
8: Sample σ from the conditional distribution in (18);
9: Update the values of {γk = jkτ

2
k : k = 1, . . . ,K};

10: Form the new diagonal matrix λ using the updated
values of {γk : k = 1, . . . ,K};

11: until number of required sampling iterations is reached.
12: Compute β∗ as the average of β across all sampling

iterations after discarding burnout iterations;

Concerning the initialization step, ν0 can be initialized to a
very small number say 0.00005. Also, w can be initially set
to a rough estimate of the sparsity level of the model, or it
can be simply set to 0.5 implying that the probability of each
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Fig. 2 The modeling error for the three different approaches
as a function of the number of samples is shown. For S&S the
green line represents the average error over 10 different ran-
dom runs, while the green shaded region shows the variation
across these runs.

TABLE I The initialization scheme for the parameters used
in Algorithm 1 is summarized.

Parameter Value
# of Iterations (M ) 2800
Burnout Iterations (Bout) 700
w 1

3
{τk : k = 1, . . . ,K} 1

{jk : k = 1, . . . ,K}
{
1 with Probability w
ν0 with Probability (1− w)

a1, b1 5
a2, b2 50
ν0 0.0005

coefficient being important is 50%. Once w is set, {jk : k =
1, . . . ,K} can be randomly initialized to take the value 1 with
probability w and ν0 with probability 1 − w. Moreover, the
standard deviation values in {τk : k = 1, . . . ,K} and σ can
be initialized to 1 if no further information about the model is
available. Finally, the values of the pairs (a1, a2) and (b1, b2)
are set to (5, 50). This choice has been shown to be suitable
for the spike and slab Bayesian model in [21].

IV. EXPERIMENTAL RESULTS

In this section, a circuit example implemented using TSMC-
40nm technology is used to demonstrate the efficacy of the
proposed method. All numerical experiments are performed
on a server with 3.4GHz processor and 32GB f memory.

To demonstrate the proposed approach we consider a
Strong-ARM latch comparator circuit with power consumption
being the performance of interest. In total, 1282 random
variables are used to model the process variations for the
circuit. The labeled samples are obtained by performing circuit
simulations based on Monte Carlo sampling. To show the
efficacy of the proposed method, three performance modeling
approaches are implemented and compared: (i) least angle
regression [9] (LAR),(ii) ridge regression [19] (Ridge) and (iii)
the proposed method. For the proposed approach, 10 runs from
different random seeds were performed and the average error
is computed. In addition, Table I summarizes the initialization
scheme used in these runs. For the other two approaches, 10
folds cross-validation was used to get the optimal sparsity
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Fig. 3 The average number of selected features as a function
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are selected.
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Fig. 4 Histogram showing the values of the coefficients in
the final model for S&S with 90 samples.

parameters. Throughout this section, the error metric used is
the relative absolute error (%).

Fig. 2 shows the modeling error as a function of the
number of samples. For the proposed approach the green line
represents the average across 10 runs, while the green shaded
region shows the variation across the 10 Gibbs sampling runs.
As shown in the figure, LAR and Ridge can converge to their
final solution faster than the proposed approach. However,
our proposed S&S approach can eventually reach a better
final solution with a lower modeling error when testing on
a separate test data. In fact, when using 90 samples in the
training data, S$S can achieve 2.39% modeling error compared
to 2.89% and 2.88% for LAR and Ridge respectively. This
translates into 17% reduction in modeling error when the same
number of simulations is used.

These results are summarized in Table II which shows as
well a comparison of runtime for the three approaches. It
is important to note that, despite the fact the S&S is more
computationally expensive when compared to LAR and Ridge,
the overall computational cost is dominated by the simulation
cost and the modeling cost is relatively negligible.

In addition, one important feature of the S&S method is that
it is a feature selection method. In other words, the model can
clearly distinguish important features. In practice, the values
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few non-zero coefficients as the model converges during the
last sampling iterations. These represent the selected features.

TABLE II A comparison between the LAR, Ridge and
S&S in terms of modeling error and computational cost is
summarized.

LAR Ridge S&S
Number of Simulations 90 90 90
Relative Error 2.89% 2.88% 2.39%
Simulation Cost (min.) 2520 2520 2520
Modeling Cost (min.) 0.1 0.1 4

of {jk : k = 1, . . . ,K} obtained from Algorithm 1 carry the
information about the importance of each feature. Moreover,
Fig. 3 shows the trend of the number of selected features as a
function of the number of samples. The figure clearly shows
that, with a small number of samples, the feature selection is
not accurate and a large number of features are selected to
fit the model. However, as the number of samples increases,
the process of feature selection improves and a small number
of features are selected. To further elaborate on this, Fig. 4
shows a histogram of the values of the model coefficient for
one run of S&S with 90 samples. As expected, the histogram
shows that the vast majority of coefficients are clustered
around zero, with only few coefficients with high absolute
value. This can be also observed by examining the sampling
process for S&S shown in Fig. 5. Although 2800 sampling
iterations were performed, the figure shows that similar results
can be achieved with only 1000 sampling iterations. After
1000 iterations, the average values of the coefficients does
not change significantly. Also, to build the final model, the
coefficients are obtained by taking the average of the values
across all iterations after the burnout threshold (set to 700
iterations). And it is clear from the figure that the average is
converging quite early for most coefficients.

V. CONCLUSION

In this paper, a new perspective towards incorporating spar-
sity in performance modeling for analog and mixed circuit us-
ing Spike and Slab models is proposed. This approach can be
used to incorporate sparsity in different modeling schemes in-
cluding the recently proposed semi-supervised learning meth-
ods. Our proposed approach uses two different priors on the
coefficients of the model in a mixture model framework. In
practice, the mixture model sets different priors on different
coefficients on the model based on their importance and a

hierarchical Bayesian framework is utilized to determine both
the importance and values of the coefficients simultaneously.
To solve for the model coefficients, a Gibbs sampler is
proposed to sample from the posterior distribution of these
coefficient. The proposed approach demonstrated superior
results compared to traditional sparse modeling schemes while
also providing a feature selection framework that can easily
select important features in the model. Experimental results
demonstrated 17% reduction in modeling error compared to
traditional sparse modeling approaches.
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