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Abstract
Hierarchical clustering methods offer an intuitive and powerful way to model a
wide variety of data sets. However, the assumption of a fixed hierarchy is of-
ten overly restrictive when working with data generated over a period of time:
We expect both the structure of our hierarchy, and the parameters of the clus-
ters, to evolve with time. In this paper, we present a distribution over collections
of time-dependent, infinite-dimensional trees that can be used to model evolving
hierarchies, and present an efficient and scalable algorithm for performing approx-
imate inference in such a model. We demonstrate the efficacy of our model and
inference algorithm on both synthetic data and real-world document corpora.

1 Introduction
Hierarchically structured clustering models offer a natural representation for many forms of data.
For example, we may wish to hierarchically cluster animals, where “dog” and “cat” are subcategories
of “mammal”, and “poodle” and “dachshund” are subcategories of “dog”. When modeling scientific
articles, articles about machine learning and programming languages may be subcategories under
computer science. Representing clusters in a tree structure allows us to explicitly capture these
relationships, and allow clusters that are closer in tree-distance to have more similar parameters.

Since hierarchical structures occur commonly, there exists a rich literature on statistical models for
trees. We are interested in nonparametric distributions over trees – that is, distributions over trees
with infinitely many leaves and infinitely many internal nodes. We can model any finite data set
using a finite subset of such a tree, marginalizing over the infinitely many unoccupied branches. The
advantage of such an approach is that we do not have to specify the tree dimensionality in advance,
and can grow our representation in a consistent manner if we observe more data.

In many settings, our data points are associated with a point in time – for example the date when
a photograph was taken or an article was written. A stationary clustering model is inappropriate in
such a context: The number of clusters may change over time; the relative popularities of clusters
may vary; and the location of each cluster in parameter space may change. As an example, consider
a topic model for scientific articles over the twentieth century. The field of computer science – and
therefore topics related to it – did not exist in the first half of the century. The proportion of scientific
articles devoted to genetics has likely increased over the century, and the terminology used in such
articles has changed with the development of new sequencing technology.

Despite this, to the best of our knowledge, there are no nonparametric distributions over time-
evolving trees in the literature. There exist a variety of distributions over stationary trees
[1, 14, 5, 13, 10], and time-evolving non-hierarchical clustering models [16, 7, 11, 2, 4, 12] – but
no models that combine time evolution and hierarchical structure. The reason for this is likely to
be practical: Inference in trees is typically very computationally intensive, and adding temporal
variation will, in general, increase the computational requirements. Designing such a model must,
therefore, proceed hand in hand with developing efficient and scalable inference schemes.
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(a) Infinite tree (b) Changing popularity (c) Cluster/topic drift

Figure 1: Our dependent tree-structured stick breaking process can model trees of arbitrary size and shape,
and captures popularity and parameter changes through time. a) Model any number of nodes (clusters, topics),
of any branching factor, and up to any depth b) Nodes can change in probability mass, or new nodes can be
created c) Node parameters can evolve over time.

In this paper, we define a distribution over temporally varying trees with infinitely many nodes that
captures this form of variation, and describe how this model can cluster both real-valued observa-
tions and text data. Further, we propose a scalable approximate inference scheme that can be run in
parallel, and demonstrate its efficacy on synthetic data where ground-truth clustering is available, as
well as demonstrate qualitative and quantitative performance on three text corpora.

2 Background
The model proposed in this paper is a dependent nonparametric process with tree-structured
marginals. A dependent nonparametric process [12] is a distribution over collections of random
measures indexed by values in some covariate space, such that at each covariate value, the marginal
distribution is given by some known nonparametric distribution. For example, a dependent Dirichlet
process [12, 7, 11] is a distribution over collections of probability measures with Dirichlet process-
distributed marginals; a dependent Pitman-Yor process [15] is a distribution over collections of
probability measures with Pitman-Yor process-distributed marginals; a dependent Indian buffet
process [17] is a distribution over collections of matrices with Indian buffet process-distributed
marginals; etc. If our covariate space is time, such distributions can be used to construct non-
parametric, time-varying models.

There are two main methods of inducing dependency: Allowing the sizes of the atoms composing
the measure to vary across covariate space, and allowing the parameter values associated with the
atoms to vary across covariate space. In the context of a time-dependent topic model, these methods
correspond to allowing the popularity of a topic to change over time, and allowing the words used
to express a topic to change over time (topic drift). Our proposed model incorporates both forms
of dependency. In the supplement, we discuss some specific dependent nonparametric models that
share properties with our model.

The key difference between our proposed model and existing dependent nonparametric models is
that ours has tree-distributed marginals. There are a number of options for the marginal distribution
over trees, as we discuss in the supplement. We choose a distribution over infinite-dimensional trees
known as the tree-structured stick breaking process [TSSBP, 1], described in Section 2.1.

2.1 The tree-structured stick-breaking process
The tree-structured stick-breaking process (TSSBP) is a distribution over trees with infinitely many
leaves and infinitely many internal nodes. Each node ε within the tree is associated with a mass πε
such that

∑
ε πε = 1, and each data point is assigned to a node in the tree according to p(zn = ε) =

πε, where zn is the node assignment of the nth data point. The TSSBP is unique among the current
toolbox of random infinite-dimensional trees in that data can be assigned to an internal node, rather
than a leaf, of the tree. This property is often desirable; for example in a topic modeling context,
a document could be assigned to a general topic such as “science” that lives toward the root of the
tree, or to a more specific topic such as “genetics” that is a descendant of the science topic.

The TSSBP can be represented using two interleaving stick-breaking processes – one (parametrized
by α) that determines the size of a node and another (parametrized by γ) that determines the branch-
ing probabilities. Index the root node as node ∅ and let π∅ be the mass assigned to it. Index its
(countably infinite) child nodes as node 1, node 2, . . . and let π1, π2, . . . be the masses assigned to
them; index the child nodes of node 1 as nodes 1 · 1, 1 · 2, . . . and let π1·1, π1·2, . . . be the masses
assigned to nodes 1 · 1, 1 · 2 . . . ; etc. Then we can sample the infinite-dimensional tree as:

νε ∼ Beta(1, α(|ε|)), ψε ∼ Beta(1, γ), π∅ = ν∅, φ∅ = 1

φε·i = ψε·i
∏i−1
j=1(1− ψε·j) πε = νεφε

∏
ε′≺ε(1− νε′)φε′ ,

(1)
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where |ε| indicates the depth of node ε, and ε′ ≺ ε indicates that ε′ is an ancestor node of ε. We refer
to the resulting infinite-dimensional weighted tree as Π = ((πε), (φεi)).

3 Dependent tree-structured stick-breaking processes
We now describe a dependent tree-structured stick-breaking process where both atom sizes and their
locations vary with time. We first describe a distribution over atom sizes, and then use this distribu-
tion over collections of trees as the basis for time-varying clustering models and topic models.

3.1 A distribution over time-varying trees
We start with the basic TSSBP model [1] (described in Section 2.1 and the left of Figure 1), and
modify it so that the latent variables νε, ψε and πε are replaced with sequences ν(t)ε , ψ(t)

ε and π(t)
ε

indexed by discrete time t ∈ T (the middle of Figure 1). The forms of ν(t)ε and ψ(t)
ε are chosen so

that the marginal distribution over the π(t)
ε is as described in Equation 1.

Let N (t) be the number of observations at time t, and let z(t)n be the node allocation of the nth
observation at time t. For each node ε at time t, let X(t)

ε =
∑Nt
n=1 I(z

(t)
n = ε) be the number

of observations assigned to node ε at time t, and Y
(t)
ε =

∑Nt
n=1 I(ε ≺ z

(t)
n ) be the number of

observations assigned to descendants of node ε. Introduce a “window” parameter h ∈ N. We can
then define a prior predictive distribution over the tree at time t, as

ν(t)ε ∼ Beta
(
1 +

∑t−1
t′=t−hX

(t′)
ε , α(|ε|) +

∑t−1
t′=t−h Y

(t′)
ε

)
ψ
(t)
ε·i ∼ Beta

(
1 +

∑t−1
t′=t−h(X

(t′)
ε·i + Y

(t′)
ε·i ),γ +

∑
j>i

∑t
t′=t−h(X

(t′)
ε·j + Y

(t′)
ε·j )

)
.

(2)

Following [1], we let α(d) = λdα0, for α0 > 0 and λ ∈ (0, 1). This defines a sequence of trees
(Π(t) = ((π

(t)
ε ), (φ

(t)
εi )), t ∈ T ).

Intuitively, the prior distribution over a tree at time t is given by the posterior distribution of the (sta-
tionary) TSSBP, conditioned on the observations in some window t− h, . . . , t− 1. The following
theorem gives the equivalence of dynamic TSSBP (dTSSBP) and TSSBP
Theorem 1. The marginal posterior distribution of the dTSSBP, at time t, follows a TSSBP.

The proof is a straightforward extension of that for the generalized Pólya urn dependent Dirichlet
process [7] and is given in the supplimentary. The above theorem implies that Equation 2 defines a
dependent tree-structured stick-breaking process.

We note that an alternative choice for inducing dependency would be to down-weight the contri-
bution of observations for previous time-steps. For example, we could exponentially decay the
contributions of observations from previous time-steps, inducing a similar form of dependency as
that found in the recurrent Chinese restaurant process [2]. However, unlike the method described in
Equation 2, such an approach would not yield stationary TSSBP-distributed marginals.

3.2 Dependent hierarchical clustering
The construction above gives a distribution over infinite-dimensional trees, which in turn have a
probability distribution over their nodes. In order to use this distribution in a hierarchical Bayesian
model for data, we must associate each node with a parameter value θ(t)ε . We let Θ(t) denote the set
of all parameters θ(t)ε associated with a tree Π(t). We wish to capture two properties: 1) Within a tree
Π(t), nodes have similar values to their parents; and 2) Between trees Π(t) and Π(t+1), corresponding
parameters θ(t)ε and θ

(t+1)
ε have similar values. This form of variation is shown in the right of

Figure 1. In this subsection, we present two models that exhibit these properties: One appropriate
for real-valued data, and one appropriate for multinomial data.

3.2.1 A time-varying, tree-structured mixture of Gaussians
An infinite mixture of Gaussians is a flexible choice for density estimation and clustering real-valued
observations. Here, we suggest a time-varying hierarchical clustering model that is similar to the
generalized Gaussian model of [1]. The model assumes Gaussian-distributed data at each node, and
allows the means of clusters to evolve in an auto-regressive model, as below:

θ
(t)
∅ |θ

(t−1)
∅ ∼ N (θ

(t−1)
∅ , σ0σ

a
1I), θ

(t)
ε·i |θ

(t)
ε , θ

(t−1)
ε·i ∼ N (m, s2I), (3)
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where, s2 =

(
1

σ0σ
|ε·i|
1

+ 1

σ0σ
|ε·i|+a
1

)−1
, m = s2·

(
θ(t)ε

(σ0σ
|ε·i|
1 )2

+
ηθ

(t−1)
ε·i

σ0σ
|ε·i|+a
1

)
, σ0 > 0, σ1 ∈ (0, 1),

η ∈ [0, 1), and a ≥ 1. Due to the self-conjugacy of the Gaussian distribution, this corresponds to
a Markov network with factor potentials given by unnormalized Gaussian distributions: Up to a
normalizing constant, the factor potential associated with the link between θ(t−1)ε and θ(t)ε is Gaus-
sian with variance σ0σ

|ε|
1 , and the factor potential associated with the link between θ(t)ε and θ(t)ε·i is

Gaussian with variance σ0σ
|ε·i|+a
1 .

For a single time point, this allows for fractal-like behavior, where the distance between child and
parent decreases down the tree. This behavior, which is not used in the generalized Gaussian model
of [1], makes it easier to identify the root node, and guarantees that the marginal distribution over
the location of the leaf nodes has finite variance. The a parameter enforces the idea that the amount
of variation between θ(t)ε and θ(t+1)

ε is smaller than that between θ(t)ε and θ(t)ε·i , while η ensures the
variance of node parameters remains finite across time. We chose spherical Gaussian distributions
to ensure that structural variation is captured by the tree rather than by node parameters.

3.3 A time-varying model for hierarchically clustering documents
Given a dictionary of V words, a document can be represented using a V -dimensional term fre-
quency vector, that corresponds to a location on the surface of the (V − 1)-dimensional unit sphere.
The von Mises-Fisher distribution, with mean direction µ and concentration parameter τ , provides
a distribution on this space. A mixture of von Mises-Fisher distributions can, therefore, be used to
cluster documents [3, 8]. Following the terminology of topic modeling [6], the mean direction µk
associated with the kth cluster can be interpreted as the topic associated with that cluster.

We construct a time-dependent hierarchical clustering model appropriate for documents by associ-
ating nodes of our dependent nonparametric tree with topics. Let x(t)

n be the vector associated with
the nth document at time t. We assign a mean parameter θ(t)ε to each node ε in each tree Π(t) as

θ
(t)
∅ |θ

(t−1)
∅ ∼ vMF(τ

(t)
∅ , ρ

(t)
∅ ), θ

(t)
ε·i |θ

(t)
ε , θ

(t−1)
ε·i ∼ vMF(τ

(t)
ε·i , ρ

(t)
ε·i ), (4)

where, ρ
(t)
∅ = κ0

√
1 + κ2a1 + 2κa1(θ

(t)
−1 · θ

(t−1)
∅ ), τ

(t)
∅ =

κ0θ
(t)
−1+κ0κ

a
1θ

(t−1)

∅

ρ
(t)

∅
ρ
(t)
ε·i =

κ0κ
|ε·i|
1

√
1 + κ2a1 + 2κa1(θ

(t)
ε · θ(t−1)ε·i ), τ

(t)
ε·i =

κ0κ
|ε·i|
1 θ(t)ε +κ0κ

|ε·i|+a
1 θ

(t−1)
ε·i

ρ
(t)
ε·i

, κ0 > 0, κ1 > 1, and

θ
(t)
−1 is a probability vector of the same dimension as the θ(t)ε that can be interpreted as the parent of

the root node at time t.1 This yields similar dependency behavior to that described in Section 3.2.1.

Conditioned on Π(t) and Θ(t) = (θ
(t)
ε ), we sample each document x

(t)
n according to z

(t)
n ∼

Discrete(Π(t)) and xn ∼ vMF(θ(t), β). This is a hierarchical extension of the temporal vMF mix-
ture proposed by [8].

4 Online Learning
In many time-evolving applications, we observe data points in an online setting. We are typically
interested in obtaining predictions for future data points, or characterizing the clustering structure of
current data, rather than improving predictive performance on historic data. We therefore propose
a sequential online learning algorithm, where at each time t we infer the parameter settings for the
tree Π(t) conditioned on the previous trees, which we do not re-learn. This allows us to focus our
computational efforts on the most recent (and likely relevant) data. This has the added advantage of
reducing the computational demands of the algorithm, as we do not incorporate a backwards pass
through the data, and are only ever considering a fraction of the data at a time.

In developing an inference scheme, there is always a trade-off between estimate quality and com-
putational requirements. MCMC samplers are often the “gold standard” of inference techniques,
because they have the true posterior distribution as the stationary distribution of their Markov Chain.
However, they can be very slow, particularly in complex models. Estimating the parameter setting
that maximizes the data likelihood is a much cheaper, but cannot capture the full posterior.

1In our experiments, we set θ(t)−1 to be the average over all data points at time t. This ensures that the root
node is close to the centroid of the data, rather than the periphery.
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In order to develop an inference algorithm that is parallelizable, runs in reasonable time, but still
obtains good predictive performance, we combine Gibbs sampling steps for learning the tree
parameters (Π(t)) and the topic indicators (z

(t)
n ) with a MAP method for estimating the location

parameters (θ
(t)
ε ). The resulting algorithm has the following desirable properties:

1. The priors for ν
(t)
ε , ψ

(t)
ε only depend on {z(0)n } . . . {z(t−1)n }, whose sufficient statistics

{X(0)
ε , Y

(0)
ε } . . . {X(t−1)

ε , Y
(t−1)
ε } can be updated in amortized constant time.

2. The posteriors for ν(t)ε , ψ
(t)
ε are conditionally independent given {z(1)n } . . . {z(t)n }. Hence we

can Gibbs sample ν(t)ε , ψ
(t)
ε in parallel given the cluster assignments {z(1)n } . . . {z(t)n } (or more

precisely, their sufficient statistics {Xε, Yε}). Similarly, we can Gibbs sample the cluster/topic
assignments {z(t)n } in parallel given the parameters {ν(t)ε , ψ

(t)
ε , θ

(t)
ε } and the data, as well as infer

the MAP estimate of {θ(t)ε } in parallel given the data and the cluster/topic assignments. Because
of the online assumption, we do not consider evidence from times u > t.

Sampling ν(t)ε , ψ
(t)
ε Due to the conjugacy between the beta and binomial distributions, we can

easily Gibbs sample the stick-breaking parameters

ν(t)ε |Xε, Yε ∼ Beta
(
1 +

∑t
t′=t−hX

(t′)
ε ,α(|ε|) +

∑t
t′=t−h Y

(t′)
ε

)
ψ
(t)
ε·i |Xε·i, Yε·i ∼ Beta

(
1 +

∑t
t′=t−h(X

(t′)
ε·i + Y

(t′)
ε·i ),γ +

∑
j>i

∑t
t′=t−h(X

(t′)
ε·j + Y

(t′)
ε·j )

)
.

The ν(t)ε , ψ
(t)
ε distributions for each node are conditionally independent given the counts X,Y , and

so the sampler can be parallelized. We only explicitly store π(t)
ε , φ

(t)
ε , θ

(t)
ε for nodes ε with nonzero

counts, i.e.
∑t
t′=t−hX

(t′)
ε + Y

(t′)
ε > 0.

Sampling z(t)n Conditioned on the ν(t)ε and ψ(t)
ε , the distribution over the cluster assignments z(t)n

is just given by the TSSBP. We therefore use the slice sampling method described in [1] to Gibbs
sample z(t)n | {ν(t)ε }, {ψ(t)

ε }, x(t)n , θ. Since the cluster assignments are conditionally independent
given the tree, this step can be performed in parallel.

Learning θ It is possible to Gibbs sample the cluster parameters θ; however, in the document clus-
tering case described in Section 3.3, this requires far more time than sampling all other parameters.
To improve the speed of our algorithm, we instead use maximum a posteriori (MAP) estimates for
θ, obtained using a parallel coordinate ascent algorithm. Notably, conditioned on the trees at time
t − 1 and t + 1, the θ(t)ε for odd-numbered tree depths |ε| are conditionally independent given the
θ
(t)
ε′ s at even-numbered tree depths |ε′|, and vice versa. Hence, our algorithm alternates between

parallel optimization of odd-depth θ(t)ε , and parallel optimization of even-depth θ(t)ε .

In general, the conditional distribution of a cluster parameter θ(t)ε depends on the values of its prede-
cessor θ(t−1)ε , its postdecessor θ(t+1)

ε , its parent at time t, and its children at time t. In some cases,
not all of these values will be available – for example if a node was unoccupied at previous time
steps. In this case, the distribution now depends on the full history of the parent node. For computa-
tional reasons, and because we do not wish to store the full history, we approximate the distribution
as being dependent only on observed members of the node’s Markov blanket.

5 Experimental evaluation
We evaluate the performance of our model on both synthetic and real-world data sets. Evaluation
on synthetic data sets allows us to verify that our inference algorithm allows us to recover the “true”
evolving hierarchical structure underlying our data. Evaluation on real-world data allows us to
evaluate whether our modeling assumptions are useful in practice.

5.1 Synthetic data
We manually created a time-evolving tree, as shown in Figure 2, with Gaussian-distributed data
at each node. This synthetic time-evolving tree features temporal variation in node probabilities,
temporal variation in node parameters, and addition and deletion of nodes. Using the Gaussian
model described in Equation 3, we inferred the structure of the tree at each time period as described
in Section 4. Figure 3 shows the recovered tree structure, demonstrating the ability of our inference
algorithm to recover the expected evolving hierarchical structure. Note that it accurately captures
evolution in node probabilities and location, and the addition and deletion of new nodes.
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Figure 2: Ground truth tree, evolving over three time steps

Figure 3: Recovered tree structure, over three consecutive time periods. Each color indicates a node in the
tree and each arrow indicates a branch connecting parent to child; nodes are consistently colored across time.

dTSSBP o-TSSBP T-TSSBP
Depth limit 4 3 4 3 4 3
TWITTER 522± 4.35 249± 0.98 414± 3.31 199± 2.19 335± 54.8 182± 24.1
SOU 2708± 32.0 1320± 33.6 1455± 44.5 583± 16.4 1687± 329 1089± 143
PNAS 4562± 116 3217± 195 2672± 357 1163± 196 4333± 647 2962± 685

dDP o-DP T-DP
TWITTER 204± 8.82 136± 0.42 112± 10.9
SOU 834± 51.2 633± 18.8 890± 70.5
PNAS 2374± 51.7 1061± 10.5 2174± 134

Table 1: Test set average log-likelihood on three datasets.

5.2 Real-world data
In Section 3.3, we described how the dependent TSSBP can be combined with a von Mises-Fisher
likelihood to cluster documents. To evaluate this model, we looked at three corpora:

• TWITTER: 673,102 tweets containing hashtags relevant to the NFL, collected over 18 weeks in 2011 and
containing 2,636 unique words (after stopwording). We grouped the tweets into 9 two-week epochs.

• PNAS: 79,800 paper titles from the Proceedings of the National Academy of Sciences between 1915 and
2005, containing 36,901 unique words (after stopwording). We grouped the titles into 10 ten-year epochs.

• STATE OF THE UNION (SOU): Presidential SoU addresses from 1790 through 2002, containing 56,352
sentences and 21,505 unique words (after stopwording). We grouped the sentences into 21 ten-year epochs.

In each case, documents were represented using their vector of term frequencies.

Our hypothesis is that the topical structure of language is hierarchically structured and time-
evolving, and that a model that captures these properties will achieve better performance than models
that ignore hierarchical structure and/or temporal evolution. To test these hypotheses, we compare
our dependent tree-structured stick-breaking process (dTSSBP) against several online nonparamet-
ric models for document clustering:

1. Multiple tree-structured stick-breaking process (T-TSSBP): We modeled the entire corpus using the sta-
tionary TSSBP model, with each node modeled using an independent von Mises-Fisher distribution. Each
time period is modeled with a separate tree, using a similar implementation to our time-dependent TSSBP.

2. “Online” tree-structured stick-breaking processes (o-TSSBP): This simulates online learning of a single,
stationary tree over the entire corpus. We used our dTSSBP implementation with an infinite window h =

∞, and once a node is created at time t, we prevent its vMF mean θ(t)ε from changing in future time points.
3. Dependent Dirichlet process (dDP): We modeled the entire corpus using an h-order Markov generalized

Pólya urn DDP [7]. This model was implemented by modifying our dTSSBP code to have a single level.
Node parameters were evolved as θ(t)k ∼ vMF(θ(t)k , ξ).

4. Multiple Dirichlet process (T-DP): We modeled the entire corpus using DP mixtures of von Mises-Fisher
distributions, one DP per time period. Each node was modeled using an independent von Mises-Fisher
distribution. We used our own implementation.
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Figure 4: PNAS dataset: Birth, growth, and death of tree-structured topics in our dTSSBP model. This
illustration captures some trends in American scientific research throughout the 20th century, by focusing on
the evolution of parent and child topics in two major scientific areas: Chemistry and Immunology (the rest of
the tree has been omitted for clarity). At each epoch, we show the number of documents assigned to each topic,
as well as it’s most popular words (according to the vMF mean θ).

5. “Online” Dirichlet process (o-DP): This simulates online learning of a single DP over the entire corpus.
We used our dDP implementation with an infinite window h =∞, and once a cluster is instantiated at time
t, we prevent its vMF mean θ(t) from changing in future time points.

Evaluation scheme: We divide each dataset into two parts: the first 50%, and last 50% of time
points. We use the first 50% to tune model parameters and select a good random restart (by training
on 90% and testing on 10% of the data at each time point), and then use the last 50% to evaluate
the performance of the best parameters/restart (again, by training on 90% and testing on 10% data).
When training the 3 TSSBP-based models, we grid-searched κ0 ∈ {1, 10, 100, 1000, 10000}, and
fixed κ1 = 1, a = 0 for simplicity. Each value of κ0 was run 5 times to get different random
restarts, and we took the best κ0-restart pair for evaluation on the last 50% of time points. For the 3
DP-based models, there is no κ0 parameter, so we simply took 5 random restarts and used the best
one for evaluation. For all TSSBP- and DP-based models, we repeated the evaluation phase 5 times
to get error bars. Every dTSSBP trial completed in < 20 minutes on a single processor core, while
we observed moderate (though not perfectly linear) speedups with 2-4 processors.

Parameter settings: For all models, we estimated each node/cluster’s vMF concentration param-
eter β from the data. For the TSSBP-based models, we used stick breaking parameters γ = 0.5 and
α(d) = 0.5d, and set θ(t)−1 to the average document term frequency vector at time t. In order to keep
running times reasonable, we limit the TSSBP-based models to a maximum depth of either 3 or 4
(we report results for both)2. For the DP-based models, we used a Dirichlet process concentration
parameter of 1. The dDP’s inter-epoch vMF concentration parameter was set to ξ = 0.001.

Results: Table 1 shows the average log (unnormalized) likelihoods on the test sets (from the last
50% of time points). The tree-based models uniformly out-perform the non-hierarchical models,
while the max-depth-4 tree models outperform the max-depth-3 ones. On all 3 datasets, the max-
depth-4 dTSSBP uniformly outperforms all models, confirming our initial hypothesis.

5.3 Qualitative results
In addition to high-quality quantitative results, we find that the time-dependent tree model gives
good qualitative performance. Figure 4 shows two time-evolving sub-trees obtained from the PNAS
data set. The top level shows a sub-tree concerned with Chemistry; the bottom level shows a sub-tree

2One justification is that shallow hierarchies are easier to interpret than deep ones; see [5, 9].
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Figure 5: State of the Union dataset: Birth, growth, and death of tree-structured topics in our dTSSBP
model. This illustration captures some key events in American history. At each epoch, we show the number of
documents assigned to each topic, as well as it’s most popular words (according to the vMF mean θ).

concerned with Immunology. Our dynamic tree model discovers closely-related topics and groups
them under a sub-tree, and creates, grows and destroys individual sub-topics as needed to fit the data.
For instance, our model captures the sudden surge in Immunology-related research from 1975-1984,
which happened right after the structure of the antibody molecule was identified a few years prior.

In the Chemistry topic, the study of mechanical properties of materials (pressure, acoustic properties,
specific heat, etc) is a constant presence throughout the century. The study of electrical properties
of materials starts off with a topic (in purple) that seems devoted to Physical Chemistry. However,
following the development of Quantum Mechanics in the 30s, this line of research became more
closely aligned with Physics than Chemistry, and it disappears from the sub-tree. In its wake, we
see the growth of a topic more concerned with electrolytes, solutions and salts, which remained the
within the sphere of Chemistry.

Figure 5 shows time-evolving sub-trees obtained from the State of the Union dataset. We see a
sub-tree tracking the development of the Cold War. The parent node contains general terms relevant
to the Cold War; starting from the 1970s, a child node (shown in purple) contains terms relevant
to nuclear arms control, in light of the Strategic Arms Limitation Talks of that decade. The same
decade also sees the birth of a child node focused on Asia (shown in cyan), contemporaneous with
President Richard Nixon’s historic visit to China in 1972. In addition to the Cold War, we also
see topics corresponding to events such as the Mexican War, the Civil War and the Indian Wars,
demonstrating our model’s ability to detect events in a timeline.

6 Discussion

In this paper, we have proposed a flexible nonparametric model for dynamically-evolving, hierar-
chically structured data. This model can be applied to multiple types of data using appropriate
choices of likelihood; we present an application in document clustering that combines high-quality
quantitative performance with intuitively interpretable results. One of the significant challenges in
constructing nonparametric dependent tree models is the need for efficient inference algorithms. We
make judicious use of approximations and combine MCMC and MAP approximation techniques to
develop an inference algorithm that can be applied in an online setting, while being parallelizable.

Acknowledgements: This research was supported by NSF Big data IIS1447676, DARPA XDATA
FA87501220324 and NIH GWAS R01GM087694.
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