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Abstract: Constructive definitions of discrete random measures, which

specify a sampling procedure for the weights and atom locations of the

measure, have proven to be of great value in Bayesian statistics and related

fields. We consider the case of completely random measures and obtain a

constructive representation on Euclidean space. For random measures on

the real line satisfying a specific �-finiteness property, the representation

is equivalent to the Ferguson-Klass representation of pure-jump Lévy pro-

cesses. Examples include constructive representations of the gamma pro-

cess, the stable process and the beta process.

1. Introduction

Kingman’s [17] notion of a completely random measure (CRM) has become a
key concept in Bayesian nonparametric statistics. Many nonparametric priors
describe a parameter variable which is a random measure or random proba-
bility measure. Most of these random measures are either completely random
measures, or are obtained from a completely random measure by normaliza-
tion (so-called normalized random measures with independent increments, or
NRMIs) [9]. The characteristic decoupling properties of CRMs account for the
tractable posterior distributions of such models. Several important aspects of
models based on CRMs, including posterior computations, can be abstracted
from the specific model in question and treated in a generic manner for the
entire class of CRMs [20]; NRMIs have similar generic properties [5, 12]. In ad-
dition to immediate applications in survival analysis and mixture modeling [e.g.
9], CRMs and NRMIs can be used to construct more complex models appro-
priate for a number of applications including user choice models [2, 8, 26] and
network models [3].

A CRM on a space ⌦✓ can be represented, in a sense to be made precise in
Sec. 2, by a discrete random measure ⇠r on ⌦✓, and hence as

⇠r(•) =
1X

k=1

Sk�⇥k(•) . (1.1)

The random variables Sk and ⇥k take values in R
+

and ⌦✓, respectively. For
the Dirichlet process—which is a NRMI rather than a CRM, and hence satisfiesP

k Sk = 1 a.s.— the sequences of variables Sk and ⇥k can be generated from
two sequences of i.i.d. random variables in a simple procedure known as stick-
breaking [11, 24]. Analogous representations are known for the beta process
[2, 21, 25]. In the following, we derive a similar constructive representation for
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completely random measures, which represents the variables Sk and ⇥k as the
images of unit-rate Poisson process draws under a fixed transformation mapping
and can be regarded as a generalization of the Ferguson-Klass representation of
pure-jump Lévy processes [6]. These representations are not generally identical
to stick-breaking representations, but may coincide, as in the case of the beta
process (Sec. 3.2). We refer to the well-known survey by Rosiński [23] for an
overview on various related representations.

2. Results

Let ⌦✓ be a Polish space with Borel sets B(⌦✓), and let M
+

(⌦✓) be the set
of measures on ⌦✓. Let ⇠ be a completely random measure on ⌦✓, that is, a
M

+

(⌦✓)-valued random variable for which ⇠(A)?? ⇠(A0) whenever A,A0
2 B(⌦✓)

are disjoint sets. According to Kingman [17, Theorem 1], ⇠ admits a unique
decomposition

⇠ = ⇠d + ⇠f + ⇠r (2.1)

into a deterministic (non-random) measure ⇠d, a random, purely atomic measure
⇠f with fixed atom locations, and a random discrete measure ⇠r. The random
component ⇠r can be described by a Poisson process with mean measure µ⇠ on
the Borel sets B(⌦✓⇥R

+

) [19, §8]. For ⌦✓ = R
+

, this process is a subordinator—
i.e. a strictly-increasing, pure-jump Lévy process. We slightly abuse terminology
and refer to the measure ⌫⇠(d✓, ds) := µ⇠(d✓ ⇥ ds) as the Lévy measure of ⇠,
regardless of the choice of ⌦✓.

Notation. If Y is a subspace of a Euclidean space, �Y denotes Lebesgue mea-
sure on Y . The cumulative distribution function of a measure ⇢ on a one-
dimensional set Y is denoted F⇢(y) := ⇢({z 2 Y |z  y}). For any monotonic
function x 7! f(x) on R

+

, we write f�1 for the right-continuous inverse, hence
f�1(y) = inf{x|f(x) � y} (if f is non-decreasing) or f�1(y) = inf{x|f(x)  y}
(if f is non-increasing). ⇧(µ) denotes a Poisson process with mean measure µ.

2.1. Poisson representation of CRMs

The class of completely random measures to which our results are applicable is
characterized as follows.

Definition 2.1. Say that a CRM ⇠ on ⌦✓ is nice if it satisfies:

(C1) It has no deterministic component, ⇠ = ⇠f + ⇠r.
(C2) It is ⌃-finite in the sense of Kingman [19, §8.1]: There is a countable

partition of ⌦✓ into disjoint sets Dj with P{⇠(Dj) < 1} > 0 for all j.
(C3) There are no jumps of size 0, that is, ⌫⇠(⌦✓, {0}) = 0.
(C4) The Lévy measure ⌫⇠ satisfies

R1
0

min{1, s}⌫⇠(⌦✓, ds) < 1.

All these conditions are commonly assumed in the literature: (C1) merely
simplifies notation. The perhaps somewhat opaque condition (C2) serves to
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ensure the existence of the decomposition (2.1). If one presupposes ⇠ to be
of the form ⇠f + ⇠r, its only purpose is to control the properties of the fixed-
atom component ⇠f . In particular, it implies that the set of atoms of ⇠f is
countable (whereas, in absence of suitable conditions, this set need not even be
measurable) [17]. If (2.1) is known to hold, one can for most purposes replace
(C2) by the strictly stronger condition that ⇠f has countably many atoms and
⇠f (⌦✓) < 1 almost surely. (C3) means each jump location in the representation
(2.4) of ⇠ below corresponds to an actual jump. Imposing (C4) ensures the
Lévy process defined by the Lévy measure ⌫⇠(⌦✓, •) has bounded variation, and
hence—since the process is non-decreasing—that the total mass ⇠r(⌦✓) of the
random measures is almost surely finite [15, Lemma 12.13]. For our purposes,
it implies

⌫⇠(⌦✓, (s,1)) < 1 for all s > 0 , (2.2)

which in turn ensures the tail T of ⌫⇠, in (2.3) below, is well-defined. If even
⌫⇠(⌦✓, [0,1)) < 1, then ⇠r has finitely many atoms almost surely, and can be
represented as a compound Poisson process; otherwise, the number of atoms
is countably infinite. The case of most interest to Bayesian nonparametrics,
however, is typically the former: (2.2) holds, but ⌫⇠ is not totally finite. Indeed,
for the arguably most important example—the gamma process, which in turn
defines the Dirichlet process via normalization—⌫⇠ is not even �-finite, but
nonetheless satisfies (2.2).

Theorem 2.2 (Poisson sampling of CRMs). Let ⇠ be a nice completely random
measure on ⌦✓. Denote the tail of ⌫⇠(⌦✓, •) by

T : R
+

! R
+

s 7! T (s) := ⌫⇠(⌦✓, (s,1))
(2.3)

and by {✓
1

, ✓
2

, . . . } ⇢ ⌦✓ the set of fixed jump locations.
(i) There is a probability kernel p : ⌦s ! M(⌦✓) such that

⇠(•) = ⇠f (•) + ⇠r(•)
d
=

X

i

Ji�✓i(•) +
X

k

T�1(Uk)�Vk(•) (2.4)

where Uk ⇠ ⇧(�) is a unit rate Poisson process on ⌦s = R
+

and V
1

, V
2

, . . . are
independent random variables with Vk ⇠ p(•, T�1(Uk)). The random variables
Ji are independent of each other and of ⇠r.
(ii) The regular conditional probability p is unique up to equivalence and deter-
mined by

⌫⇠(A,B) =

Z

B

p(A, s)d⌫⇠(⌦✓, s) (2.5)

even if ⌫⇠(⌦✓, •) is not �-finite.

If ⌫⇠(⌦✓, •) is �-finite, (2.5) simply states that p is given by the densities

p(A, s) :=
d⌫⇠(A, •)

d⌫⇠(⌦✓, •)
(s) for A 2 B(⌦✓) . (2.6)
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The intuition underlying Theorem 2.2 is straightforward: As a completely ran-
dom measure, ⇠r can represented by a Poisson process with mean measure ⌫⇠
(see [19, §8] for a detailed discussion). Specifically,

⇠r
d
=

X

k

Sk�⇥k if and only if (Sk,⇥k) ⇠ ⇧(⌫⇠) . (2.7)

Let � : ⌦✓⇥R
+

! ⌦✓⇥R
+

be a measurable mapping. By one of the basic prop-
erties of Poisson processes [19, Chapter 2.3], the image of the Poisson process
⇧(�) under � satisfies

�(⇧(�)) = ⇧(�(�)) (2.8)

for any �-finite measure � on ⌦✓⇥R
+

. We can thus posit a simple mean measure
�—for example Lebesgue measure, if ⌦✓ is Euclidean—and reduce the represen-
tation of ⇠r to a transformation of �. To determine this transformation, the
equation

⌫⇠ = �(�) s.t. � measurable (2.9)

has to be solved for �. Problems of the form (2.9) are known as transport prob-
lems in analysis [27]. In one dimension, these problems admit a simple solution:
If ⌫ and � are measures on the real line with distribution functions F⌫ and F� ,
respectively, then the transport problem ⌫ = �(�) is obviously solved by

� := F�1

⌫ � F� . (2.10)

If � is in particular Lebesgue measure, then � = F�1

⌫ . Theorem 2.2 substi-
tutes the tail T for the distribution function F⌫ , since F⌫ is not well-defined for
measures whose mass is infinite in a neighborhood of 0.

In multiple dimensions, the transport problem becomes considerably more
di�cult, which a↵ects the proof Theorem 2.2, since the sample space is ⌦✓⇥R

+

and hence at least two-dimensional. The strategy pursued in the proof is to
factor out a one-dimensional problem on R

+

, by disintegrating µ⇠ into the pair
(p, ⌫⇠(⌦✓, •)), where p is a conditional probability on ⌦✓ given s 2 R

+

, and
⌫⇠(⌦✓, •) is a measure on R

+

. The transport problem is then solved only on
R

+

—without further assumptions on the structure of ⌦✓, a general solution for
p is not feasible. Thus, ⇠r is sampled by sampling (Sk,⇥k) from a Poisson process
with mean measure given by p(d✓, T�1(u))�R

+

(du), and only the weights Sk of
⇠r are reduced to unit-rate sampling.

2.2. Representation on Euclidean space

If ⌦✓ is contained in Euclidean space, it is possible to construct more elaborate
couplings and extend the representation in Theorem 2.2 to the variables ⇥k,
thus fully reducing ⇠r to unit-rate Poisson samples. We will assume here for
simplicity that ⌦✓ = RD, although the approach carries over immediately to
the cone RD

+

or to products of closed intervals.
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To solve the transport problem on ⌦✓, the disintegration approach used above
to separate ⌦✓ and R

+

is now in turn applied repeatedly to p(•, s). Each ap-
plication separates o↵ a one-dimensional component, to which (2.10) is applica-
ble. Formalizing this approach comes at the price of some rather cumbersome
notation: Label the axes of RD as R(1),R(2), ..., and suppose that p has been
obtained by application of Theorem 2.2. For d = 1, . . . , D, denote by pd the
marginal measure of p on the subspace Rd = R(1)

⇥ · · · ⇥ R(d). Let qd be the
probability kernel obtained by disintegrating pd with respect to pd�1

; that is,

pd(d✓1 · · · d✓d, s) = qd(d✓d|✓1, . . . , ✓d�1

, s)pd�1

(d✓
1

· · · d✓d�1

, s) . (2.11)

As above, let Fqd(✓d|✓1, . . . , ✓d�1

, s) denote the cumulative distribution function
of the one-dimensional measure qd(•|✓1, . . . , ✓d�1

, s).

Theorem 2.3 (Successive subspace sampling). Let ⇠ be a nice completely ran-
dom measure on ⌦✓, and let T be defined as in (2.3). For unit-rate Poisson
samples

(Uk,W
(1)

k , . . . ,W (d)

k ) ⇠ ⇧(�R
+

⌦ �D

[0,1]) , (2.12)

define

Sk := T�1(Uk) and ⇥(d)

k := F�1

qd
(W (d)

k |⇥(1)

k , . . . ,⇥(d-1)

k , Sk) . (2.13)

Then the purely random component ⇠r of ⇠ is distributed as

⇠r
d
=

1X

k=1

Sk�
(⇥

(1)

k ,...,⇥
(D)

k )

. (2.14)

This reduction to the one-dimensional solution (2.10) by successive disinte-
gration is an example of a general approach to the determination of couplings
on Euclidean spaces, due originally to Rosenblatt [22].

Remark 2.4. In (2.6), the disintegration of p is obtained as a family of densi-
ties. It is not di�cult to see that the relevant argument in the proof of Theorem
2.2 also applies to the disintegration in Theorem 2.3—with some considerable
simplifications, since pd always describes a probability measure. The probability
kernel qd in Theorem 2.3 can therefore be represented as densities

qd(A|✓(1), . . . , ✓(d-1), s) =
pd(d✓(1)

· · · d✓(d-1)

⇥A⇥ ds)

pd(d✓(1)

· · · d✓(d-1)

⇥ R⇥ ds)
, (2.15)

in direct analogy to (2.6).

2.3. Representation on the line

If ⌦✓ is an interval in R
+

, the collection of functions F�1

qd
reduces to F�1

q
1

(w|s) =
(p([0, •], s)�1)(w). Therefore, nice CRMs on the positive reals can be repre-
sented as follows:
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Corollary 2.5 (Ferguson and Klass [6]). Let ⇠ be a nice completely random
measure on ⌦✓ = R

+

or ⌦✓ = [0, ✓
max

], where ✓
max

2 R
+

. Denote the inverse of
the distribution function ✓ 7! p([0, ✓], s) by

m : [0, 1]⇥ R
+

! ⌦✓

(w, s) 7! m(w, s) := (p([0, •], s)�1)(w) .
(2.16)

Then

⇠(•) = ⇠f (•) + ⇠r(•)
d
=

X

i

Ji�✓i(•) +
X

k

T�1(Uk)�m(Wk,T�1

(Uk))
(•) (2.17)

where (Uk,Wk) ⇠ ⇧(�⌦ �
[0,1]) is a unit rate Poisson process on ⌦✓ ⇥ [0, 1].

In other words, the transport problem µ = �(�⌦�
[0,1]) is in this case solved by

�(u,w) = (T�1(u),m(w, T�1(u))) . (2.18)

Remark 2.6 (Distribution of ⇠f ). If the distribution ⇠r serves as a prior distri-
bution in a nonparametric Bayesian model, fixed atoms arise in the posterior,
where the locations ✓i in Theorem 2.2 correspond to observations or latent ob-
servations. The distributions of the random variables Ji can then be derived
explicitly from ⌫⇠ [20]. For Bayesian models with a conjugate posterior, the rep-
resentation of ⇠f can be absorbed into that of ⇠r, by adding a suitable atomic
measure to the Lévy measure ⌫⇠.

3. Examples

We distinguish between two cases, the homogeneous and inhomogeneous case.
In analogy to Lévy processes, a CRM is called homogeneous if the measure ⌫⇠

factorizes as ⌫⇠(d✓, ds) = H
0

(d✓)⌫(s)⇠ (ds). Consequently, the conditional proba-
bility p of ⇥ in Theorem 2.2 becomes independent of S, and hence p(A, s) =
H

0

(A)/H
0

(⌦✓). See the classic work of Kingman [18] for a definitive treatment
of the homogeneous case.

3.1. The homogeneous case

Example 1 (Gamma CRM). The gamma CRM is the completely random
measure with Lévy measure

⌫⇠(d✓, ds) = s�1e�csdsH
0

(d✓) , (3.1)

for c > 0 and H
0

(d✓) a finite measure on ⌦✓. The tail can therefore be repre-
sented by means of the exponential integral E

1

as

T (s) = H
0

(⌦✓)E1

(cs) . (3.2)
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Example 2 (Stable CRM). For ↵ 2 (0, 1) and finite measure H
0

(d✓) on ⌦✓,
the CRM with Lévy measure

⌫⇠(d✓, ds) =
↵

�(1� ↵)s1+↵
dsH

0

(d✓) . (3.3)

is called an ↵-stable CRM. The tail is given by

T (s) = H
0

(⌦✓)(�(1� ↵)z↵)�1 . (3.4)

3.2. An inhomogeneous case: Beta CRMs

The beta CRM, introduced by Hjort [10], is a CRM with

⌫⇠(d✓, ds) = c(✓)s�1(1� s)c(✓)�1ds dH
0

(✓) , (3.5)

where H
0

is a totally finite measure on ⌦✓ and the function c(✓) is assumed to
be non-negative and piecewise-continuous. In Bayesian nonparametric statistics,
the beta CRM is used as a prior over cumulative hazards, in which case the
corresponding distribution function is neutral-to-the-right. In this case, H

0

is a
prior guess at the hazard function on R

+

restricted to a subset ⌦✓ = [0, ✓
max

)
that meets the finiteness constraint.

In general, evaluating the tail involves evaluating a degenerate incomplete
beta function, and cannot be done analytically. Wolpert and Ickstadt [28] de-
scribe an approximate method for evaluating this degenerate incomplete beta
function. For certain choices of c and H

0

, p([0, ✓], s) can be obtained analyti-
cally; two examples are given below.

Example 3 (Beta CRM with c(✓) = exp(�H
0

(✓))). Consider the beta CRM
with c(✓) = exp(�H

0

(✓)). Then

p([0, ✓], s) =
1� s� (1� s)exp(�H

0

(✓))

1� s� (1� s)exp(�H
0

(✓
max

))

,

and we can obtain p([0, •], s)�1(u) if H
0

is invertible.

Another application of the beta CRM derives from the Indian bu↵et pro-
cess [8], a distribution over binary sequences used as a prior in nonparametric
latent feature models. These random sequences are exchangeable, and the mix-
ing measure in their de Finetti representation is a beta CRM where c(✓) = 1,
rendering the CRM homogeneous [26].

Example 4 (Beta CRM with c(✓) = 1). If c(✓) = 1, the Lévy measure reduces
to ⌫⇠(d✓, ds) =

ds
s dH0

(✓), and the tail function is

T (s) = �H
0

(⌦✓) log(z) , (3.6)

yielding Sk = exp{� Uk
H

0

(⌦✓)
.
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Let Ũ
1

< Ũ
2

< . . . be the ordered arrival times of a unit rate Poisson pro-
cess U ⇠ ⇧(�). The inter-arrival times Ũn+1

� Ũn are distributed according to
Expon(1), therefore exp(Ũn � Ũn+1

) is distributed according to Uniform(0, 1)
and exp((Ũn � Ũn+1

)/H
0

(⌦✓)) is distributed according to Beta(H
0

(⌦✓), 1). We
can therefore directly generate the strictly-ordered atom sizes s

1

> s
2

> . . . of
a beta CRM with c(✓) = 1 as

sn =
nY

i=1

bn with bn ⇠ Beta(H
0

(⌦✓), 1) . (3.7)

Equation (3.7) is precisely the stick-breaking construction of the beta CRM
derived by Teh, Görur, and Ghahramani [25].

4. Related work

The notion of a completely random measure is due to Kingman [17], and has
been studied in a variety of contexts in Bayesian statistics (see e.g. the recent
surveys by Lijoi and Prünster [20] and by Jordan [13]).

If ⌦✓ = R
+

, the independence property ⇠(A)??⇠(A0) implies that the random
component of a completely random measure ⇠ is representable as a stochas-
tic process with independent increments. The random measure ⇠r is therefore
equivalent to a subordinator, i.e. a pure-jump, strictly-increasing Lévy process,
possibly non-stationary; two such random measures can be combined to give a
general pure-jump Lévy process with finite variation. In particular, the marginal
distribution of the jump sizes is infinitely divisible. Khintchine [16, Hauptsatz
III] shows that infinitely divisible laws admit representations of the form (2.4).
Ferguson and Klass [6] re-derive this result for the representation of pure-jump
Lévy processes on the interval, and additionally give an explicit transformation
equivalent to the solution of the transport problem on R

+

as in Theorem 2.2.
They conjecture that the approximating random sequence converges with prob-
ability one. Kallenberg [14] shows that this is the case, and that the sequence
in fact converges uniformly almost surely. The proof of Ferguson and Klass
[6] implicitly assumes the marginal Lévy measure ⌫⇠(⌦✓, •) to be �-finite (cf.
the Radon-Nikodym derivative defined on p. 1636 of [6]). Though their result
carries over immediately to completely random measures on the interval, the �-
finiteness assumption excludes some important CRMs, such as those defined by
the gamma process [19, Chapter 9.4]. Representations of the form (2.4), usually
without explicit transformations, exist more generally for exchangeable incre-
ment processes [15, Theorem 16.21], since such processes can be characterized
as mixtures of Lévy processes [15, Theorem 11.15].

Kingman [19, Chapter 8.2] shows in detail how CRMs can represented as
Poisson processes, and points out that these are indeed marked Poisson processes
if the measure ⌫⇠(⌦✓, •) is �-finite. Thus, the beta CRM of Hjort [10] is a
marked Poisson process; the gamma CRM is not. Motivated by applications in
nonparametric statistics, the beta CRM has recently received renewed attention
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in statistics and computer science. Analogues of the stick-breaking construction
of the Dirichlet process have been derived for the beta CRM by Teh et al. [25]
(cf. Sec. 3), and more recently by Paisley et al. [21] and Broderick et al. [2], who
both emphasize the Poisson representation.

5. Proofs

Verifying the existence of the disintegration (p, ⌫⇠(⌦✓, •)) raises some technical
issues, since the measure ⌫⇠(⌦✓, •) is not generally �-finite. The intuition is,
once again, very simple: If ⌫⇠(⌦✓, •) is �-finite, p(A, •) is given by the density
of ⌫⇠(A, •) with respect to ⌫⇠(⌦✓, •), and it is easy to see that p(;, s) = 0, that
p(⌦✓, s) = 1, and that A 7! p(A, s) is increasing in A. In the general case, the
analogous result is expressed by the following lemma.

Lemma 5.1. Let ⇠ be a nice completely random measure on ⌦✓ whose Lévy
measure ⌫⇠ satisfies ⌫⇠(⌦✓, (s,1)) < 1. Then there is a probability kernel p :
R

+

! M(⌦✓) satisfying

⌫⇠(A, ds) = p(A, s)⌫⇠(⌦✓, ds) for each A 2 B(⌦✓) . (5.1)

Each function s 7! p(A, s) is uniquely determined up to a ⌫⇠(⌦✓, •)-null set.

The proof of Lemma 5.1 is more technical than instructive, and we defer it
until the end of this section and first proceed with proofs of the main results.

Proof of Theorem 2.2. Any ⌃-finite CRM ⇠ without non-random component
can be represented by means of a Poisson process ⇧(µ) with mean measure
µ(A⇥B) = ⌫⇠(A,B). More precisely,

⇠ = ⇠f + ⇠r
d
=

X

i

Ji�✓i +
X

k

Sk�⇥k , (5.2)

where ✓i are fixed atoms, the random variables Ji are mutually independent and
do not depend on ⇠r, and (⇥k, Sk) follow a Poisson process ⇧(µ) [4, Theorem
10.1.III]. Since the existence of p and Theorem 2.2(ii) follow from Lemma 5.1,

what remains to be shown is that
P

Sk�⇥k

d
=

P
T�1(Uk)�Vk .

To this end, consider first the measure µ
⌦✓ (•) := ⌫⇠(⌦✓, •) on atom sizes.

Since ⇠ is ⌃-finite, the tail T of µ
⌦✓ is finite on (0,1] [19]. It is straightforward

to verify, for Lebesgue measure � on R
+

,

�(T ([a, b))) = µ
⌦✓ [a, b) (5.3)

for all 0 < a < b. Since the intervals [a, b) generate the Borel sets, (5.3) implies
T�1� = µ

⌦✓ , solving the one-dimensional transport problem.
Now consider the entire measure µ⇠(A⇥B) = ⌫⇠(A,B). By construction,

µ⇠(A⇥B) =

Z

B

p(A, s)µ
⌦✓ (ds) =

Z

B

p(A, s)[T�1�](ds) (5.4)
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for all A 2 B(R
+

). Therefore, p is the conditional probability

p(A, s) = P [⇥ 2 A|S = s] (5.5)

under the law of the Poisson process, and the proof is complete.

Theorem 2.3 is a direct consequence of the construction of disintegrations
and the representation of CRMs in Theorem 2.2. Corollary 2.5 then follows
immediately as the special case D = 1.

Proof of Theorem 2.3. Suppose Sk = sk and ⇥(d)

k = ✓(d)

k are sampled as in
(2.13). By construction, each ⇥(d)

k has distribution

Law(⇥(d)

k |⇥(1)

k = ✓(1)

k , . . . ,⇥(d-1)

k = ✓(d-1)

k , Sk = sk) = qd(•|✓
(1)

k , . . . , ✓(d-1)

k , sk) .
(5.6)

Since q
1

(•|sk) = p
1

(•|sk), we have

qD(d✓(D)

|✓(1)

k , . . . , ✓(D-1)

k , sk) · · · q
2

(d✓(2)

|✓(1)

k , sk)p1

(d✓(1)

k |sk) = p(d✓(1)

k · · · d✓(D)

k , sk)

and the joint law of ⇥k = (⇥(1)

k , . . . ,⇥(D)

k ) is thus Law(⇥k) = p(•, sk). An
application of Theorem 2.2 yields the representation (2.14) of ⇠r.

Both proofs above are contingent on Lemma 5.1, which remains to be es-
tablished. The proof uses the following result to address the problem that the
marginal measure ⌫⇠(⌦✓, •) is not, in general, �-finite.

Lemma 5.2 (Generalized Radon-Nikodym Theorem [7, 232E and 232B(b)]).
Let ⌫, ⌫0 be measures on a measurable space (X ,A). There is a measurable
function f : X ! R

+

satisfying ⌫(A) =
R
A
fd⌫0 for all A 2 A if and only if:

(i) ⌫ is absolutely continuous with respect to ⌫0.
(ii) For all A 2 A with ⌫(A) > 0, there exists another set B 2 A such that

⌫0(B) < 1 and ⌫(A \B) > 0.

In this case, f is uniquely determined ⌫0-a.e.

If ⌫0 is �-finite, absolute continuity implies condition (ii), and the lemma
reduces to the Radon-Nikodym theorem.

Proof of Lemma 5.1. For the proof, abbreviate µ
A

:= ⌫⇠(A, •). We proceed in
two steps:
Step (1).We first show that, for every A 2 B(⌦✓), there exists a measurable func-
tion p(A, •) : R

+

! R
+

which satisfies (5.1). By Lemma 5.2, this is the case if
the measures µ

A

and ⌫⇠(⌦✓, •) satisfy conditions (i) and (ii) of Lemma 5.2. Abso-
lute continuity clearly holds since ⌫⇠(A,D)  ⌫⇠(⌦✓, D) for every D 2 B(R

+

) by
construction. To verify condition (ii), observe that (2.6) implies µ

A

(",1) < 1

for all " > 0. The obvious strategy is therefore to show that (ii) is satisfied for
a set B of the form B = (",1). To this end, let µ

A

= µk
A

+ µ?
A

the decom-
position of µ

A

into its purely atomic component µ?
A

and the atomless measure
µk

A

= µ
A

� µ?
A

. Suppose µ
A

(D) > 0 as in (ii). We distinguish two cases:
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Case 1 : µk
A

(D) > 0. Since µk
A

is atomless, any set with µk
A

(D) > 0 has a
subset D

1

with µk
A

(D
1

) > 0 and µk
A

(D \D
1

) > 0. In particular, since D ⇢ R
+

,
there exists " > 0 such that µk

A

(D \ [0, "]) > 0 and µ
A

(D \ (",1)) > 0. Hence,
B := (",1) satisfies condition (2) for any D.

Case 2 : µk
A

(D) = 0, which implies µ?
A

(D) > 0. Since {0} is by assumption
not an atom, D contains an atom {c} of µ?

A

with c > 0. Hence, B = (c/2,1)
satisfies µ?

A

(D \B) � µ?
A

({c}) > 0.
Step (2). What remains to be shown is that the separate functions p(A, •)
for each A can be assembled into a probability kernel, i.e. we need to know
that s 7! p(A, s) is measurable and A 7! p(A, s) is a measure for every s 2

R
+

. Measurability follows from Lemma 5.2. To establish �-additivity of p(•, s),
suppose that (An) is a sequence of disjoint sets in B(⌦✓) with A := [An. By
�-additivity of ⌫⇠,

Z

B

p([An, s)⌫⇠(⌦✓, ds) =
1X

n=1

⌫⇠(An, B) =
1X

n=1

Z

B

p(An, s)⌫⇠(⌦✓, ds) . (5.7)

Since s 7! p(An, s) are measurable functions with values in [0,+1], we have [1,
Corollary 11.5]

1X

n=1

Z

B

p(An, s)⌫⇠(⌦✓, ds) =

Z

B

⇣ 1X

n=1

p(An, s)
⌘
⌫⇠(⌦✓, ds) , (5.8)

which by a.e.-uniqueness implies p(A, s)
a.e.
=

P
p(An, s). Moreover,

0 = ⌫⇠(;, B) =

Z

B

p(;, s)⌫⇠(⌦✓, ds) (5.9)

for all B 2 B(R
+

) implies p(;, s) = 0 for almost all s. Thus, there is a version
of p such that A 7! p(A, s) is a probability measure for all s.

References

[1] Bauer, H. (2001). Measure and Integration Theory . W. de Gruyter.
[2] Broderick, T., Jordan, M. I., and Pitman, J. (2012). Beta processes, stick-

breaking and power laws. Bayesian Anal., 7(2), 439–475.
[3] Caron, F. and Fox, E. B. (2014). Sparse graphs using exchangeable random

measures. Preprint. http://arxiv.org/abs/1401.1137.
[4] Daley, D. and Vere-Jones, D. (2008). An introduction to the theory of point

processes, volume I and II. Springer, 2nd edition.
[5] Favaro, S., Lijoi, A., and Prünster, I. (2012). Conditional formulae for Gibbs-

type exchangeable random partitions. Ann. Appl. Probab. To appear.
[6] Ferguson, T. S. and Klass, M. J. (1972). A representation of independent

increment processes without gaussian components. Ann. Math. Statist., 43,
1634–1643.

[7] Fremlin, D. H. (2000–2006). Measure Theory , volume I–V. Torres Fremlin.

http://arxiv.org/abs/1401.1137


Orbanz and Williamson/Unit-rate Poisson representations 12

[8] Gri�ths, T. L. and Ghahramani, Z. (2006). Infinite latent feature models
and the Indian bu↵et process. In Adv. Neural Inf. Process. Syst. 18 , pages
475–482. MIT Press.

[9] Hjort, N., Holmes, C., Müller, P., and Walker, S., editors (2010). Bayesian
Nonparametrics. Cambridge University Press.

[10] Hjort, N. L. (1990). Nonparametric Bayes estimators based on beta pro-
cesses in models for life history data. Ann. Statist., 18, 1259–1294.

[11] Ishwaran, H. and James, L. F. (2001). Gibbs sampling methods for stick-
breaking priors. Journal of the American Statistical Association, 96(453),
161–173.

[12] James, L. F., Lijoi, A., and Prünster, I. (2009). Posterior analysis for
normalized random measures with independent increments. Scand. J. Stat.,
36, 76–97.

[13] Jordan, M. I. (2010). Hierarchical models, nested models and completely
random measures. In M.-H. Chen, D. Dey, P. Mueller, D. Sun, and K. Ye,
editors, Frontiers of Statistical Decision Making and Bayesian Analysis: In
Honor of James O. Berger . Springer.

[14] Kallenberg, O. (1974). Series of random processes without discontinuities
of the second kind. Ann. Probability , 2, 729–737.

[15] Kallenberg, O. (2001). Foundations of Modern Probability . Springer, 2nd
edition.

[16] Khintchine, A. (1937). Zur theorie der unbeschränkt teilbaren verteilungs-
gesetze. Mat. Sbornik , 2(44), 79–119.

[17] Kingman, J. F. C. (1967). Completely random measures. Pacific Journal
of Mathematics, 21(1), 59–78.

[18] Kingman, J. F. C. (1975). Random discrete distributions. J. R. Stat. Soc.
Ser. B Stat. Methodol., 37, 1–22.

[19] Kingman, J. F. C. (1993). Poisson Processes . Oxford University Press.
[20] Lijoi, A. and Prünster, I. (2010). Models beyond the Dirichlet process.

In N. L. Hjort, C. Holmes, P. Müller, and S. G. Walker, editors, Bayesian
Nonparametrics. Cambridge University Press.

[21] Paisley, J., Blei, D., and Jordan, M. I. (2012). Stick-breaking beta processes
and the Poisson process. In Proceedings of AISTATS 2012 (JMLR W&CP
22), pages 850–858.

[22] Rosenblatt, M. (1952). Remarks on a multivariate transformation. Ann.
Math. Statistics, 23, 470–472.
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